Patents

 

U.S. 9,424,489: Automated feature analysis, comparison, and anomaly detection

Novel methods and systems for automated data analysis are disclosed. Data can be automatically analyzed to determine features in different applications, such as visual field analysis and comparisons. Anomalies between groups of objects may be detected through clustering of objects.

 

U.S. 9,122,956: Automated feature analysis, comparison, and anomaly detection

Novel methods and systems for automated data analysis are disclosed. Data can be automatically analyzed to determine features in different applications, such as visual field analysis and comparisons. Anomalies between groups of objects may be detected through clustering of objects.

 

U.S. 8,260,428: Method and system for training a visual prosthesis

A method for training a visual prosthesis includes presenting a non-visual reference stimulus corresponding to a reference image to a visual prosthesis patient. Training data sets are generated by presenting a series of stimulation patterns to the patient through the visual prosthesis. Each stimulation pattern in the series is determined at least in part on a received user perception input and a fitness function optimization algorithm. The presented stimulation patterns and the user perception inputs are stored and presented to a neural network off-line to determine a vision solution.

 

U.S. 8,078,309: Method to create arbitrary sidewall geometries in 3-dimensions using LIGA with a Stochastic Optimization Framework

Disclosed herein is a method of making a three dimensional mold comprising the steps of providing a mold substrate; exposing the substrate with an electromagnetic radiation source for a period of time sufficient to render the portion of the mold substrate susceptible to a developer to produce a modified mold substrate; and developing the modified mold with one or more developing reagents to remove the portion of the mold substrate rendered susceptible to the developer from the mold substrate, to produce the mold having a desired mold shape, wherein the electromagnetic radiation source has a fixed position, and wherein during the exposing step, the mold substrate is manipulated according to a manipulation algorithm in one or more dimensions relative to the electromagnetic radiation source; and wherein the manipulation algorithm is determined using stochastic optimization computations.

 

U.S. 7,762,664: Optomechanical and digital ocular sensor reader systems

System, methods, and devices are described for eye self-exam. In particular, optomechanical and digital ocular sensor reader systems are provided. The optomechanical system provides a device for viewing an ocular sensor implanted in one eye with the other eye. The digital ocular sensor system is a digital camera system for capturing an image of an eye, including an image of a sensor implanted in the eye.

 

U.S. 7,742,845: Multi-agent autonomous system and method

A method of controlling a plurality of crafts in an operational area includes providing a command system, a first craft in the operational area coupled to the command system, and a second craft in the operational area coupled to the command system. The method further includes determining a first desired destination and a first trajectory to the first desired destination, sending a first command from the command system to the first craft to move a first distance along the first trajectory, and moving the first craft according to the first command. A second desired destination and a second trajectory to the second desired destination are determined and a second command is sent from the command system to the second craft to move a second distance along the second trajectory.

 

U.S. 7,734,063: Multi-agent autonomous system

A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

 

U.S. 7,481,534: Optomechanical and digital ocular sensor reader systems

System, methods, and devices are described for eye self-exam. In particular, optomechanical and digital ocular sensor reader systems are provided. The optomechanical system provides a device for viewing an ocular sensor implanted in one eye with the other eye. The digital ocular sensor system is a digital camera system for capturing an image of an eye, including an image of a sensor implanted in the eye.

 

U.S. 7,321,796: Method and system for training a visual prosthesis

A method for training a visual prosthesis includes presenting a non-visual reference stimulus corresponding to a reference image to a visual prosthesis patient. The visual prosthesis including a plurality of electrodes. Training data sets are generated by presenting a series of stimulation patterns to the patient through the visual prosthesis. Each stimulation pattern in the series, after the first, is determined at least in part on a previous subjective patient selection of a preferred stimulation pattern among stimulation patterns previously presented in the series and a fitness function optimization algorithm. The presented stimulation patterns and the selections of the patient are stored and presented to a neural network off-line to determine a vision solution.

 

U.S. 7,131,945: Optically powered and optically data-transmitting wireless intraocular pressure sensor device

An implantable intraocular pressure sensor device for detecting excessive intraocular pressure above a predetermined threshold pressure is disclosed. The device includes a pressure switch that is sized and configured to be placed in an eye, wherein said pressure switch is activated when the intraocular pressure is higher than the predetermined threshold pressure. The device is optically powered and transmits data wirelessly using optical energy. In one embodiment, the pressure sensor device is a micro electromechanical system.

 

U.S. 7,101,044: Automated objective characterization of visual field defects in 3D

A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.

 

U.S. 6,990,406: Multi-agent autonomous system

A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

 

U.S. 6,769,770: Computer-based 3D visual field testing with peripheral fixation points

A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern including a peripheral fixation point is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of diagnostic processes. In one embodiment of the invention, a series of visual test patterns of varying contrast levels or colors are presented to a patient in order to construct a three-dimensional visual field representation wherein contrast sensitivity is plotted as the Z-axis.

 

E.P. 1276411: Computer-based 3d visual field test method

A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of diagnostic processes. In one embodiment of the invention, a series of visual test patterns of varying contrast are presented to a patient in order to construct a three-dimensional visual field representation wherein contrast sensitivity is plotted against a Z-axis.

 

U.S. 6,578,966: Computer-based 3D visual field test system and analysis

A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of diagnostic processes. In one embodiment of the invention, a series of visual test patterns of varying contrast are presented to a patient in order to construct a three-dimensional visual field representation wherein contrast sensitivity is plotted against a Z-axis.